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EXECUTIVE SUMMARY 

A clear application of computing to traffic is real-time optimization of traffic signal 

operations. However, this kind of problem requires an evaluation of the quality of various 

potential solutions. While this is not difficult, it is currently extremely slow, rendering real-time 

solution infeasible.  

In this project, we proposed replacing current micro-simulation solutions with a meso-

simulator that uses machine learning to learn the arrival time functions for traffic parameters on a 

street segment with street segment characteristics. We ran a priority queue-based simulator that 

estimated the arrival time of each car at the next decision point for that car. We tested our 

simulator against data collected from the widely used VISSIM micro-simulator. A big advantage 

of this solution is the customization of the arrival time predictor for specific street segments and 

other parameters such as time of day or weather. This would replace the one-size-fits-all 

formulas used by most simulators. 
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1 INTRODUCTION AND APPROACH 

1.1. Background and Introduction  

Traffic optimization is a complex system without reliable and situation-specific closed 

form formulas for optimization. This means that simulation plays a critical role in any 

advancement in traffic optimization. Micro-models simulate car behavior in very small steps, 

leading to extremely long computing times that are impractical for any in-depth optimization. 

Furthermore, the connection with real traffic behavior is tenuous because the car behavior model 

is based on a few simple, hard coded abstractions that apply everywhere. This affects the 

model’s reliability to predict traffic flow. In contrast, meso-simulation is much faster because it 

requires only the ability to estimate arrival times at the ends of street segments. Unfortunately, 

these estimations are difficult to make because they must be based not only on engineering 

parameters but also on road conditions, including congestion and subjective influences such as 

width and weather conditions. 

With the advent of specialized hardware and high-performance bus and memory 

architectures, machine learning has shown near magical improvement in the last 10 years. 

Evidence of this is plainly visible on the cell phones we use every day, such as speech 

recognition and classification of a picture library by subject. Machine learning has been applied 

to various traffic problems as well, including methods of predicting congestion [3, 5, 6] using 

techniques such as random forests and neural networks. Other examples are intersection traffic 

prediction [2], traffic density prediction using long short-term memory (LSTM) networks [1], 

traffic forecasting with Bayesian networks [8], and accident prediction accomplished by 

distinguishing normal from abnormal traffic behaviors [4]. We applied this machine learning 
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technology to predicting the behavior of traffic on individual road segments, thereby allowing us 

to quickly assess arrival times. 

1.2. Research Approach  

We produced a fast mesoscopic simulation whose key component was a predictor 

function for each road segment to predict the travel time distribution for each car across that 

segment. Let ds(c, θ ) be a predictor function for a segment s, where c is the congestion on the 

segment and θ is a vector of other factors such as road conditions and weather conditions. Let p 

denote the travel time distribution predicted by the predictor function. ds(c, θ ) predicts the travel 

time distribution p. During the running of the simulation, random samples from the distribution p 

are used. 

To obtain these predictor functions, we proposed using machine learning techniques 

based on monitoring of real traffic behavior. Specifically, we aimed to test our ideas by using 

machine learning to learn predictor functions for the streets in various model cities run with the 

popular VISSIM micro-simulator. That is, VISSIM would stand in for real-world traffic 

observations. To measure our success, we would compare the timings seen in VISSIM with those 

in our mesoscopic simulator. Furthermore, because the mesoscopic simulator would not have to 

simulate every small step along a road, it would run much faster. Perturbation of VISSIM traffic 

data controlled by auxiliary parameters would allow us to test more difficult traffic simulation 

conditions.  

An advantage of our approach was that functions could be street- and time-specific. This 

could include even behaviors that standard simulators might find difficult to handle, such as  

optically narrow streets, 5:00 pm traffic that faces a setting sun, intersections with complex 

characteristics based on awkwardly sized turn lanes, etc. This specificity was made possible by 
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monitoring actual traffic behavior and using machine learning methods to build a predictor for 

that case. The overall result would be simulations that run at greatly increased speed and fidelity. 
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2. WORK PERFORMED AND RESULTS 

2.1. Simulation Model Overview  

Using the VISSIM micro-simulator as a benchmark for "reality," we built a mesoscopic-

level simulator with the objective of comparing its performance and accuracy. The basic 

simulator was constructed but required learning from collected VISSIM data, which we did. Our 

first machine learning work was to create a neural network function that used street segment 

parameter data to generate an arrival time as an output. Unfortunately, this was not what we 

actually observed in the real world or as an output of VISSIM. What we actually got was a 

distribution of arrival times. An example of this can be seen in the simple function shown in 

Figure 2-1 mapping congestion to travel time taken from observations of travel time on a street 

segment in VISSIM. 

 

Figure 2-1 Normalized travel time versus number of cars on the road 
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We tried and discarded the idea of learning a normally distributed function of arrival 

times. Instead, we developed a Gaussian Mixture Model approach for the non-Gaussian 

distributions we were observing.  In the example of a skewed arrival time distribution shown in 

Figure 2-2, our algorithm created a mixture model that fit the target distribution and allowed us 

to create a random distribution function that was quick to evaluate for use in the simulator. 

 

Figure 2-2 Traffic density versus predicted and actual distributions 
 

This was novel machine learning work, and we believed it would yield a simulator that 

was much more true to the nature of traffic.  

In summary, our work included a scheduling queue meso-simulator and machine learning 

algorithms for learning arrival time distributions. 

2.2. Simulation Model Results  

The experiments were conducted by using the Python programming language with 

Python version 3.8.5. We collected data from VISSIM to get data comparable to real-life 

scenarios. 

2.2.1 Statistical Test 

The distribution of travel times of vehicles in our simulator was tested against the 

distribution of travel times of vehicles in VISSIM. For our tests, the null hypothesis was that the 

travel time distribution of our simulator was the same as the travel time distribution of VISSIM. 

We used the Mann-Whitney U Test [9] to prove our hypothesis. We obtained a p-value by using 
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the Mann-Whitney U Test. If the p-value was less than 0.05, we rejected the null hypothesis that 

the two distributions were the same. Otherwise, we failed to reject the null hypothesis that the 

two distributions were the same. We denoted `Reject' to reject the null hypothesis and `Accept' to 

fail to reject the null hypothesis. 

2.2.2 Road network 

We collected data from VISSIM for the road networks shown in figures 2-3 and 2-4. 

Figure 2-3 shows a road network with a single road segment/edge and two nodes. The route of 

vehicles had node 1 as the origin and node 2 as the destination, with a single path. 

 
Figure 2-3 Road network with a single road segment 

 
Figure 2-4 Road network with multiple road segments 

 
The road network shown in Figure 2-4 had multiple road segments and six nodes and 

seven edges. The route of vehicles had node 1 as the origin and node 5 as the destination. Three 
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paths existed between nodes 1 and 5. We tested our simulator against VISSIM for different 

parameters on these road networks. This is shown in the following sections. These road networks 

were chosen to test the performance of our simulator for road networks with single and multiple 

segments. Of the data, 80 percent was used for training (with 10 percent used for validation) and 

20 percent was used for testing. 

2.2.3 Testing on Different Numbers of Road Segments and Lanes 

In this work, a "single segment" refers to a road network with a single road segment, as 

shown in Figure 2-3.  "Multiple segment" refers to a road network with multiple road segments, 

as shown in Figure 2-4. We set the vehicle input rate to 100 vehicles per hour. 

The null hypothesis was that the travel time (total) distribution of our simulator and 

VISSIM were the same. We denoted `Reject' to reject the null hypothesis and `Accept' to fail to 

reject the null hypothesis. In Table 2-1 we can see that in all the cases we achieved `Accept,' 

indicating that our simulator worked the same way as VISSIM for different numbers of road 

segments and lanes.  

Table 2-1 Testing our simulator against VISSIM for different numbers of road segments and 
lanes. 

Num. of road segments 
Num. of 
Lanes P-value Reject/Accept 

Single 1 0.95 Accept 
Single 2 0.93 Accept 
Single 3 0.97 Accept 

Multiple 1 0.77 Accept 
Multiple 2 0.73 Accept 
Multiple 3 0.73 Accept 

 

We tested our simulator against VISSIM for road networks with single and multiple road 

segments. We also tested for one, two, and three lanes for each segment. The distribution of 

travel times in our simulator were similar to those of VISSIM for different numbers of road 
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segments and lanes. This is shown in Table 2-1. In all the cases, we achieved `Accept,' indicating 

that our simulator worked the same way as VISSIM for single and multiple road segments and 

for different numbers of lanes. Note that the p-values for the single segment road networks were 

similar whether the networks had one, two, or three lanes. Also, the p-values for the multiple 

segment road networks were similar whether the networks had one, two, or three lanes. 

2.2.4 Testing on Different Congestion Levels/Vehicle Input Rates 

The driving behavior of an individual varies with congestion on the road. The congestion 

during the daytime is different from that in the early morning and at night. Congestion may be 

higher when people leave from major events or if they are going to or from work. At other times, 

say late night or noon, congestion may be lower. We tested our simulator against VISSIM for 

different congestion levels/ vehicle input rates. Testing was performed on a multiple-segment 

road network (Figure 2-4) with three lanes. The distribution of travel times in our simulator was 

tested against the distribution of travel times in VISSIM by using the Mann-Whitney U Test [9].  

The null hypothesis was that the travel time (total) distribution of our simulator and 

VISSIM were the same. We denoted `Reject' to reject the null hypothesis and `Accept' to fail to 

reject the null hypothesis. We compared the distributions of total travel time for the vehicles in 

our simulator and VISSIM. Table 2-2 shows the p-values and Reject/Accept values for different 

scenarios. In all cases, we achieved `Accept,' indicating that our simulator worked the same way 

as VISSIM for different congestion levels. 

Table 2-2. Testing our simulator against VISSIM for different congestion levels. 
Congestion 

(Vehicles/hr) P-value Reject/Accept 
10 0.93 Accept 
50 0.59 Accept 

100 0.73 Accept 
500 0.87 Accept 
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1500 0.68 Accept 
1800 0.52 Accept 
2100 0.61 Accept 

 

2.2.5 Testing on Different Speed Limits 

The driving behavior of an individual varies with the speed limits of the road. We set the 

vehicle input rate to 100 vehicles per hour and tested our simulator against VISSIM for different 

speed limits. The distribution of travel times in our simulator was tested against the distribution 

of travel times in VISSIM by using the Mann-Whitney U Test [9].  

The null hypothesis was that the travel time (total) distribution of our simulator and that 

of VISSIM were the same. We denoted `Reject' to reject the null hypothesis and `Accept' to fail 

to reject the null hypothesis. Table 2-3 shows the p-values and Reject/Accept values for different 

scenarios.  Testing was done on a multiple-segment road network (Figure 2-4) with a single lane. 

We compared the distributions of total travel time for the vehicles in our simulator and VISSIM. 

Table 2-3 shows that in all the cases, we achieved `Accept,' indicating that our simulator worked 

the same way as VISSIM for different speed limits. 

Table 2-3 Testing our simulator against VISSIM for different speed limits. 

Speed limit (km/hr)   P-value  
  
Reject/Accept 

20 0.79 Accept 
30 0.78 Accept 
40 0.84 Accept 
   

60 0.76 Accept 
70 0.79 Accept 

 

2.2.6 Testing on Road Segments That Are Uphill or Downhill 

The driving behavior of an individual uphill is different from the driving behavior 

downhill. We performed testing on uphill and downhill road segments. The uphill road segments 
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had a positive slope/gradient, and the downhill road segments had a negative slope/gradient. We 

set the vehicle input rate to 100 vehicles per hour. We tested our simulator against VISSIM for 

different gradient/slope values. The distribution of travel times in our simulator was tested 

against the distribution of travel times in VISSIM by using the Mann-Whitney U Test [9]. 

The null hypothesis was that the travel time (total) distribution of our simulator and 

VISSIM were the same. We denoted `Reject' to reject the null hypothesis and `Accept' to fail to 

reject the null hypothesis. Table 2-4 shows the p-values and Reject/Accept values for different 

scenarios. Testing was done on a multiple-segment road network (Figure. 2-4) with a single lane. 

We compared the distributions of total travel time for the vehicles in our simulator and VISSIM. 

Table 2-4 shows that in all the cases, we achieved `Accept,' indicating that our simulator worked 

the same way as VISSIM for different gradient/slope values. 

Table 2-4 Testing our simulator against VISSIM for different gradient/slope values. 

Gradient/Slope values P-value Reject/Accept 
0% 0.73 Accept 

-10%, 0%, 10% 0.94 Accept 
-20%, 0%, 20% 0.73 Accept 

-100%, 0%, 100% 0.89 Accept 
-200%, -100%, 0%, 100%,200% 0.78 Accept 

-20%, -10%, 0%, 10%,20% 0.86 Accept 
 

2.2.7 Running Time Comparison 

Figure 2-5 shows a box and whisker plot of the running times (seconds) of simulations 

performed on our simulator and VISSIM. The plot shows the running times of 72 simulations 

and that our simulator had a significantly lower running time than VISSIM. The median, 

minimum, and maximum running times in VISSIM were 492.74 s, 452.47 s, and 593.58 s, 

respectively. The median, minimum, and maximum running times in our simulator were 29.18 s, 

26.86 s, and 57.34 s, respectively. The ratio of the running time of simulations in VISSIM and 
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our simulator had a range of 10.02 to 21.45. In other words, our simulator ran 10.02 to 21.45 

times faster than VISSIM. Note that we used the Python programming language, and Python is 

500 times slower than C. Nevertheless, our simulator was still at least 10.02 times faster. 

 

 

Figure 2-5 Box and whisker plot of running times (s) of simulations using our simulator and 
VISSIM.  
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CHAPTER 3: CONCLUSION 

We developed a mesoscopic simulator that has a predictor for each road segment. The 

predictor for a road segment predicts the travel time distribution for the particular traffic 

conditions. The mesoscopic simulator selects a random sample of the predicted distribution as 

travel time. We compared the performance of our simulator with that of VISSIM, which stood in 

for real-time traffic data. 

We demonstrated through our experiments that the travel time distributions predicted by 

our simulator were similar to those of VISSIM for various scenarios. We also conducted 

experiments to test the running times of simulations using our simulator and VISSIM, and we 

found that our simulator ran 10.02 to 21.45 times faster than VISSIM. 
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